lunes, 22 de junio de 2015

Parto

El parto es el proceso por el que el niño nace. Hacia el final del embarazo, el útero se hace cada vez más excitable hasta que, por último, comienza a contraerse de manera sostenida y rítmica con tal potencia que expulsa al feto. La causa exacta de la intensa actividad del útero se desconoce, pero hay al menos dos grandes grupos de efectos que culminan en las intensas contracciones responsables del parto: 1) los cambios hormonales progresivos que inducen una excitabilidad mayor de la musculatura uterina, y 2) los cambios mecánicos progresivos.



viernes, 19 de junio de 2015

Cambios Fisiológicos en el embarazo

Lo más destacado de las numerosas reacciones que el feto y el exceso de hormonas del embarazo suscitan en la madre es el aumento de tamaño de los diversos órganos sexuales. Por ejemplo, el útero aumenta desde unos 50 g hasta alrededor de 1.100 g y las mamas alcanzan un tamaño aproximadamente el doble. Al mismo tiempo, la vagina se agranda y el introito se abre más. Además, las diversas hormonas pueden causar grandes cambios del aspecto de la mujer, dando lugar a veces a la aparición de edema, acné y rasgos masculinos o acromegálicos.


jueves, 11 de junio de 2015

Placenta

A medida que las células trofoblásticas invaden la decidua, digiriéndola y reabsorbiéndola, el embrión utiliza los nutrientes almacenados en ella para llevar a cabo su crecimiento y desarrollo. En la primera semana siguiente a la implantación, este es el único medio de que dispone el embrión para nutrirse y continúa empleándolo para conseguir al menos parte de su nutrición durante 8 semanas, incluso aunque la placenta empiece también a mantener su nutrición del embrión desde alrededor de 16 días después de la fecundación (algo más de 1 semana luego de la implantación).  Este período trofoblástico de la nutrición que, paulatinamente, da paso a la nutrición placentaria.




Implantación

Si no ocurre la fecundación, el cuerpo lúteo comienza a disminuir su secreción de esteroides alrededor de 10 días después de la ovulación. Esta ausencia de los esteroides produce necrosis y esfacelación del endometrio después del día 28 del ciclo. Si ha ocurrido la fecundación y la implantación, estos fenómenos desde luego deben evitarse para mantener el embarazo.


martes, 9 de junio de 2015

Fecundación 


La fecundación del óvulo suele producirse en la ampolla de una trompa poco después de que el óvulo y el espermatozoide penetren en la misma. Antes de que un espermatozoide pueda llegar hasta el óvulo, deberá atravesar las numerosas capas de células de la granulosa adheridas a la superficie del óvulo (corona radiada) y además tendrá que adherirse y atravesar la zona pelúcida que rodea al óvulo.


viernes, 5 de junio de 2015

Acto Sexual Femenino

El éxito de la realización del acto sexual femenino depende tanto de la estimulación psicológica como de la estimulación sexual local. Los pensamientos eróticos pueden provocar el deseo sexual en la mujer, lo que supone una ayuda notable para la realización del acto sexual femenino.las sensaciones sexuales se transmiten a los segmentos sacros de la médula espinal a través del nervio pudendo y del plexo sacro. Una vez que estas señales han penetrado en la médula espinal, se transmiten al cerebro.
También los reflejos locales integrados en la médula espinal sacra y lumbar son, al menos en parte, responsables de algunas reacciones de los órganos sexuales femeninos.


miércoles, 3 de junio de 2015

Acto Sexual Masculino

La fuente más importante de señales nerviosas sensitivas para la iniciación del acto sexual masculino es el glande del pene. El glande contiene un órgano sensitivo muy sensible que transmite al sistema nervioso central una modalidad especial de sensación denominada sensación sexual. La acción de masaje del glande en la relación sexual estimula los órganos sensitivos terminales y las señales sexuales, a su vez, se propagan a través del nervio pudendo y después, por el plexo sacro, a la porción sacra de la médula espinal y por último ascienden a través de la médula hasta proyectarse en áreas no definidas del encéfalo.





jueves, 28 de mayo de 2015

Ovulación

Los años fértiles normales de la mujer se caracterizan por variaciones rítmicas mensuales de la secreción de hormonas femeninas y por las correspondientes alteraciones físicas de los ovarios y otros órganos sexuales. Este patrón rítmico recibe el nombre de ciclo sexual mensual femenino (o, de forma menos precisa, ciclo menstrual). La duración de cada ciclo es, por término medio, de 28 días, si bien puede ser de tan sólo 20 días o tan largo como 45 días en algunas mujeres, aunque la longitud anormal del ciclo se asocia con frecuencia a una menor fertilidad.
El ciclo sexual femenino tiene dos consecuencias importantes. En primer lugar, habitualmente sólo se libera un único óvulo de los ovarios cada mes, de forma que en situaciones normales sólo puede crecer un solo feto cada vez. Además, el endometrio uterino se prepara para la implantación del óvulo fecundado en el momento preciso del mes.








martes, 26 de mayo de 2015

Gametogénesis 

Un gen específico en el cromosoma Y activa a las gónadas embrionarias para que se conviertan en testículos. Las mujeres carecen de un cromosoma Y; la falta de este gen hace que desarrollen ovarios. Los testículos en etapa embrionaria secretan testosterona, lo cual induce al desarrollo de órganos sexuales accesorios masculinos y genitales externos. La falta de testículos en un embrión femenino produce el desarrollo de órganos sexuales accesorios en la mujer.

La gametogénesis es la formación de gametos por medio de la meiosis a partir de células germinales. Mediante este proceso, el número de cromosomas que existe en las células germinales se reduce de diploide (doble) a haploide (único), es decir, a la mitad del número de cromosomas que contiene una célula normal de la especie de que se trate. En el caso de los hombres si el proceso tiene como fin producir espermatozoides se le denomina espermatogénesis y se realiza en los testículos. En el caso de las mujeres, si el resultado son ovocitos se denomina ovogénesis y se lleva a cabo en los ovarios.


lunes, 18 de mayo de 2015

Aparato Digestivo: Páncreas, Digestión de Carbohidratos, Lípidos y Proteinas

El páncreas produce jugo pancreático, una secreción exocrina que contiene bicarbonato e importantes enzimas digestivas.

Los principales alimentos que sostienen la vida del organismo se clasifican, con excepción de las pequeñas cantidades de ciertas sustancias como las vitaminas y los minerales, en hidratos de carbono, grasas y proteínas. En general, la mucosa gastrointestinal no puede absorber ninguno de ellos en su forma natural, por lo que, sin un proceso de digestión preliminar, no servirían como elementos nutritivos. En este capítulo se estudian los procesos por los que los hidratos de carbono, las grasas y las proteínas se digieren hasta convertirse en compuestos suficientemente pequeños como para que puedan ser absorbidos y los mecanismos por los que se absorben los productos finales de la digestión, así como el agua, los electrólitos y otras sustancias




jueves, 14 de mayo de 2015

Aparato Digestivo: Hígado, Sistema Porta y Funciones Hepáticas

El hígado regula la composición química de la sangre de numerosas formas. De manera adicional, produce y secreta la bilis, la cual se almacena y concentra en la vesícula biliar antes de su descarga en el duodeno.


martes, 12 de mayo de 2015

Aparato Digestivo: Ácido Gástrico, Intestino delgado, Intestino grueso y Defecación.


El tiempo de permanencia de los alimentos en cada una de las partes del tubo digestivo es esencial para un procesamiento óptimo y para la absorción de nutrientes. Además, se precisa una mezcla adecuada, pero como las necesidades de mezcla y propulsión son muy distintas en cada estadio del proceso, cada una de ellas está controlada por numerosos mecanismos nerviosos y hormonales de retroalimentación, dirigidos a que ambas tengan lugar de la mejor forma posible, ni demasiado rápidas, ni demasiado lentas.





viernes, 8 de mayo de 2015

Aparato Digestivo: Generalidades, Esófago, Estomago.

El aparato digestivo suministra al organismo un aporte continuo de agua, electrólitos, vitaminas y nutrientes, para lo que se requiere: 1) el tránsito de los alimentos a lo largo de todo el tubo digestivo; 2) la secreción de los jugos digestivos y la digestión de los alimentos; 3) la absorción de los productos digeridos, el agua, las vitaminas y los distintos electrólitos; 4) la circulación de la sangre por las vísceras gastrointestinales para transportar las sustancias absorbidas, y 5) el control de todas estas funciones por los sistemas locales, nervioso y hormonal.

Cada parte se adapta a unas funciones específicas: algunas, al simple paso de los alimentos, como sucede con el esófago; otras, a su almacenamiento, como es el caso del estómago, y otras, a la digestión y a la absorción, como el intestino delgado.





miércoles, 29 de abril de 2015

Riñón: Control de electrolitos y Regulación ácido-básica.

La concentración de potasio en el líquido extracelular está regulada normalmente en unos 4,2 mEq/l, y raramente aumenta o disminuye más de ±0,3 mEq/l. Este control preciso es necesario porque muchas funciones celulares son muy sensibles a los cambios en la concentración del potasio en el líquido extracelular. Por ejemplo, un aumento de la concentración de potasio de sólo 3-4 mEq/l puede provocar arritmias cardíacas, y concentraciones mayores una parada cardíaca o una fibrilación.

La regulación del equilibrio del ion hidrógeno (H+) es similar, en cierta forma, a la regulación
de otros iones del cuerpo. Por ejemplo, para alcanzar la homeostasis, debe existir un equilibrio entre la ingestión o la producción de H+ y su eliminación neta del organismo para conseguir la homeostasis. Y, tal como sucede con otros iones, los riñones desempeñan una función fundamental en la regulación de la eliminación del H+ del organismo. Pero el control preciso de la concentración del H+ en el líquido extracelular implica mucho más que la simple eliminación de estos iones por los riñones. Existen también múltiples mecanismos de amortiguación acidobásica en la sangre, las células y los pulmones que son esenciales para el mantenimiento de las concentraciones normales de H+ tanto en el líquido extracelular como en el intracelular.





lunes, 20 de abril de 2015

Riñón: Reabsorción de agua y sal; Depuración plasmatica Renal


Los riñones realizan sus funciones más importantes filtrando el plasma y eliminando sustancias del filtrado con una intensidad variable, dependiendo de las necesidades del cuerpo. Finalmente, los riñones «aclaran» las sustancias no deseadas del filtrado (y por tanto del cuerpo) excretándolas a la orina mientras devuelven las sustancias necesarias de nuevo a la sangre.

A medida que el filtrado glomerular pasa por los túbulos renales, fluye de forma secuencial a través de sus diferentes partes (el túbulo proximal, el asa de Henle, el túbulo distal, el túbulo colector y, finalmente, el conducto colector) antes de eliminarse por la orina. A lo largo de este recorrido, algunas sustancias se reabsorben selectivamente en los túbulos volviendo a la sangre, mientras que otras se secretan desde la sangre a la luz tubular. Finalmente, la orina ya formada y todas las sustancias que contiene representan la suma de los tres procesos básicos que se producen en el riñón (la filtración glomerular, la reabsorción tubular y la secreción tubular).




viernes, 17 de abril de 2015

Riñón: Estructura y función de filtración, Micción.

La mayoría de las personas saben que los riñones tienen una función importante: eliminar del cuerpo los materiales de desecho que se han ingerido o que ha producido el metabolismo. Una segunda función que es especialmente crítica es controlar el volumen y la composición de los líquidos corporales. En lo que respecta al agua y casi todos los electrólitos del cuerpo, el equilibrio entre los ingresos (debidos a la ingestión y a la producción metabólica) y las salidas (debidas a la excreción o al consumo metabólico) lo mantienen en gran medida los riñones. Esta función reguladora de los riñones mantiene el ambiente interno estable necesario para que las células desempeñen sus diversas actividades.







martes, 14 de abril de 2015

Transporte de gases

Una vez que el oxígeno ha difundido desde los alvéolos hacia la sangre pulmonar, es transportado hacia los capilares de los tejidos periféricos combinado casi totalmente con la hemoglobina. La presencia de hemoglobina en los eritrocitos permite que la sangre transporte de 30 a 100 veces más oxígeno de lo que podría transportar en forma de oxígeno disuelto en el agua de la sangre.
En las células de los tejidos corporales el oxígeno reacciona con varios nutrientes para formar grandes cantidades de dióxido de carbono. Este dióxido de carbono entra en los capilares tisulares y es transportado de nuevo hacia los pulmones. El dióxido de carbono, al igual que el oxígeno, también se combina en la sangre con sustancias químicas que aumentan de 15 a 20 veces el transporte del dióxido de carbono.




domingo, 12 de abril de 2015

Intercambio de gases

Después de que los alvéolos se hayan ventilado con aire limpio, la siguiente fase del proceso respiratorio es la difusión del oxígeno desde los alvéolos hacia la sangre pulmonar y la difusión del dióxido de carbono en la dirección opuesta, desde la sangre. El proceso de difusión es simplemente el movimiento aleatorio de moléculas en todas las direcciones a través de la membrana respiratoria y los líquidos adyacentes. Sin embargo, en fisiología respiratoria no sólo interesa el mecanismo básico mediante el que se produce la difusión, sino también la velocidad a la que ocurre; este es un problema mucho más complejo, que precisa un conocimiento más profundo de la física de la difusión y del intercambio gaseoso.


miércoles, 25 de marzo de 2015

Sistema respiratorio: Mecánica de la respiración, Regulación de la respiración y Espirometría 

La inspiración tranquila, normal, se produce por contracción muscular, y la espiración normal, por relajación muscular y retroceso elástico. La cantidad de aire inspirado y espirado se puede medir de diversas maneras para probar la función pulmonar.

Las neuronas motoras que estimulan los músculos respiratorios están controladas por dos vías descendentes principales: una que controla la respiración voluntaria, y otra que controla la respiración involuntaria. El control rítmico inconsciente de la respiración está influido por retroacción sensorial proveniente de receptores sensibles a la PCO2, el pH y la PO2 de la sangre arterial.




martes, 24 de marzo de 2015

Sistema Respiratorio: Generalidades

La respiración proporciona oxígeno a los tejidos y retira el dióxido de carbono. Las cuatro funciones principales de la respiración son: 1) ventilación pulmonar, que se refiere al flujo de entrada y salida de aire entre la atmósfera y los alvéolos pulmonares; 2) difusión de oxígeno y de dióxido de carbono entre los alvéolos y la sangre; 3) transporte de oxigeno y de dióxido de carbono en la sangre y los líquidos corporales hacia las células de los tejidos corporales y desde las mismas, y 4) regulación de la ventilación y otras facetas de la respiración. Este capítulo analiza la ventilación pulmonar y los cinco capítulos posteriores abordan las otras funciones respiratorias más la fisiología de alteraciones respiratorias especiales.


jueves, 5 de marzo de 2015

Vasos Sanguíneos

Una característica muy importante del aparato vascular es que todos los vasos sanguíneos son distensibles. La naturaleza distensible de las arterias las permite acomodarse al gasto pulsátil del corazón y superar las pulsaciones de la presión, con lo que se consigue un flujo de sangre continuo y homogéneo a través de los vasos sanguíneos muy pequeños de los tejidos.
Con diferencia, los vasos más distensibles del cuerpo son las venas, capaces de almacenar 0,5-1 l de sangre extra con incrementos incluso leves de la presión venosa. Por tanto, las venas ejercen una función de reservorio para almacenar grandes cantidades de sangre extra que puede utilizarse siempre que se requiera en cualquier otro punto de la circulación.


viernes, 20 de febrero de 2015

Electrocardiograma: Ineterpretación y Eje eléctrico

Cuando el impulso cardíaco atraviesa el corazón, la corriente eléctrica también se propaga desde el corazón hacia los tejidos adyacentes que lo rodean.
Una pequeña parte de la corriente se propaga hacia la superficie corporal. Si se colocan electrodos en la piel en lados opuestos del corazón se pueden registrar los potenciales eléctricos que se generan por la corriente; el registro se conoce como electrocardiograma.





Electrocardiograma Ejercicios





jueves, 12 de febrero de 2015

Ciclo Cardíaco

Las aurículas se contraen aproximadamente 1/6 de segundo antes de la contracción ventricular, lo que permite el llenado de los ventrículos antes de que bombeen la sangre a través de los pulmones y de la circulación periférica. Todas las porciones de los ventrículos se contraen casi simultáneamente, lo que es esencial para una generación de presión más eficaz en las cavidades ventriculares.



miércoles, 11 de febrero de 2015

Sistema de Conducción

El corazón está dotado de un sistema especial para: 
1) generar impulsos eléctricos rítmicos para producir la contracción rítmica del músculo cardíaco y
2) conducir estos estímulos rápidamente por todo el corazón.


lunes, 9 de febrero de 2015

Corazón: Generalidades

El corazón está formado realmente por dos bombas separadas: un corazón derecho que bombea sangre hacia los pulmones y un corazón izquierdo que bombea sangre hacia los órganos periféricos. A su vez, cada uno de estos corazones es una bomba bicameral pulsátil formada por una aurícula y un ventrículo. Cada una de las aurículas es una bomba débil de cebado del ventrículo, que contribuye a transportar sangre hacia el ventrículo correspondiente. Los ventrículos después aportan la principal fuerza del bombeo que impulsa la sangre: 1) hacia la circulación pulmonar por el ventrículo derecho o 2) hacia la circulación periférica por el ventrículo izquierdo. Mecanismos especiales del corazón producen una sucesión continuada de contracciones cardíacas denominada ritmicidad cardíaca, que transmite potenciales de acción por todo el músculo cardíaco y determina su latido rítmico. 




domingo, 1 de febrero de 2015

Sangre: Hemoglobina y Formación de tapón plaquetario

El término hemostasia significa prevención de la pérdida de sangre. Siempre que se corta o se rompe un vaso, se llega a la hemostasia por varios mecanismos: 1) el espasmo vascular; 2) la formación de un tapón de plaquetas; 3) la formación de un coágulo sanguíneo como resultado de la coagulación sanguínea, y 4) la proliferación final de tejido fibroso en el coágulo sanguíneo para cerrar el agujero en el vaso de manera permanente.



martes, 27 de enero de 2015

Sangre: Generalidades, Sistema ABO y Factor Rh

Cuando se intentaba por primera vez realizar una transfusión de sangre de una persona a otra, ocurría a menudo la aglutinación inmediata o tardía y la hemólisis de los eritrocitos de la sangre, lo que daba como resultado reacciones transfusionales típicas que llevan frecuentemente a la muerte. Pronto se descubrió que la sangre de personas diferentes tiene antígenos y propiedades inmunitarias diferentes, por lo que los anticuerpos del plasma de un tipo de sangre reaccionarán con los antígenos que hay en las superficies de los eritrocitos de otro tipo sanguíneo. Si se toman las precauciones adecuadas, se puede determinar con antelación si los anticuerpos y los antígenos presentes en el donante y en el receptor de la sangre provocarán una reacción transfusional.